quarta-feira, 7 de dezembro de 2011

  A matemática hindu apresenta mais problemas históricos do que a grega, pois os matemáticos indianos raramente se referiam a seus predecessores e exibiam surpreendente independência em seu trabalho matemático.

    A Índia, assim como o Egito, tinha seus esticadores de corda. As primitivas noções geométricas tomaram corpo no escrito conhecido como, Sulvasutras (regras de cordas). Este escrito tem três versões, sendo que a mais conhecida tem o nome de Apastamba. Nesta primeira versão, da mesma época de Pitágoras, são encontradas regras para construção de ângulos retos por meio de ternas de cordas cujos comprimentos formam tríadas pitagóricas. Este escrito, provavelmente, sofreu influência babilônica, visto que estas tríadas encontram-se nas tábuas cuneiformes. A origem e a data dos Sulvasutras são incertos, de modo que não é possível relacioná-los com a primitiva agrimensura egípcia ou com o problema grego de duplicar um altar.

   Após esta publicação, surgiram os Siddhantas (sistemas de astronomia). O começo da dinastia Gupta (290) assinalou um renascimento da cultura sânscrita e estes escritos podem ter sido um produto disto. A trigonometria de Ptolomeu se baseava na relação funcional entre as cordas de um círculo e os ângulos centrais que subentendem. Para os autores dos Siddhantas, a relação ocorre entre metade de uma corda de um círculo e metade do ângulo subentendido no centro pela corda toda.
    A Índia teve muitos matemáticos que fizeram grandes contribuições. Entre eles podemos destacar:

  • Aryabhata
Publicou, em 499, uma obra intitulada Aryabhatiya. Esta publicação é um pequeno volume sobre astronomia e matemática, semelhante aos Elementos de Euclides, porém de oito séculos antes. São compilações de resultados anteriores. Esta obra contém: nome das potências de dez, até a décima; regras de mensuração (muitas erradas); área do triângulo; volume da pirâmide (incorreto); área do círculo; volume da esfera (incorreto) e áreas de quadriláteros (algumas incorretas). Também encontramos cálculos com a medida do tempo e trigonometria esférica.

  • Brahmagupta
Viveu na Índia central pouco mais de cem anos depois de Aryabhata. Tem pouco em comum com seu predecessor que vivia no leste da Índia. Seu trabalho mais importante foi a generalização da fórmula de Heron para achar a área de qualquer quadrilátero. Também trabalhou na solução de equações quadráticas com raízes negativas.


  • Bhaskara
   Considerado o mais importante matemático do século doze (1114 ? 1185). Ele preencheu as lacunas do trabalho de Brahmagupta. É dele a primeira resposta plausível para a divisão por zero. Em seu trabalho Vija-Ganita ele afirma que tal quociente é infinito. Sua outra obra, Lilavati, apresenta tópicos sobre equações lineares e quadráticas, determinadas e indeterminadas, mensuração, progressões aritméticas e geométricas, radicais, tríadas pitagóricas, entre outras. Sua obra representa a culminação de contribuições hindus anteriores.

  • Ramanujan
   Após Bhaskara, a Índia passou vários séculos sem matemáticos de importância comparável. Srinivasa Ramanujan (1887-1920) é considerado o gênio hindu, em aritmética e álgebra, do século vinte.

   A introdução de uma notação para uma posição vazia, o símbolo para o zero, foi o segundo passo para o nosso moderno sistema de numeração. Não se sabe se o número zero (diferente do símbolo para a posição vazia) surgiu junto com os nove numerais hindus. É bem possível que o zero seja originário do mundo Grego, talvez de Alexandria. Possivelmente foi transmitido à Índia depois que o sistema posicional já estava estabelecido lá. É interessante observar que os Maias do Yucatán (México), anterior à Colombo, usavam notação posicional, com notação para a posição vazia. Com a introdução, na notação hindu, do décimo numeral, um ovo de ganso para o zero, o nosso moderno sistema de numeração para os inteiros estava completo.

   A nova numeração, geralmente chamada de hindu-arábica, é uma nova combinação dos três princípios básicos, todos de origem antiga:
i) base decimal
ii) notação posicional
iii) forma cifrada para cada um dos dez numerais

   Nenhum destes, originalmente, aos hindus, mas foi devido a eles que os três foram ligados pela primeira vez para formar o nosso sistema de numeração.
   Outra contribuição importante dos hindus foi a introdução de um equivalente da função seno na trigonometria para substituir a tabela de cordas dos gregos. A trigonometria hindu era um instrumento útil e preciso para a astronomia.

Nenhum comentário:

Postar um comentário